Stability and capsizing

- What is stability?
- Basic concepts –righting moment and "GZ curve"
- Large angle stability
- Things that affect stability
- Guidelines for choosing a design
- Guidelines when modifying a boat

Dr Kim Klaka MRINA

www.klakamarine.org

Session Contents

- What is stability?
- Basic concepts –righting moment and "GZ curve"
- Large angle stability
- Things that affect stability
- Guidelines for choosing a design
- Guidelines when modifying a boat

What is stability?

• Normal sailing:

Stability = power to carry sail

• Extreme conditions:

Stability = ability to resist capsize

Monohull - Casualty Statistics

RNLI lifeboat launches (5 year period)

Causes of Capsize

• Overpowered by the wind

Potential hazard for vessel with low range of stability ie. less than 90 degrees.

 Knocked down by a gust or squall
Can happen to any craft, not a hazard if structure remains buoyant and stable at large angles.

• Rolled by a breaking wave

Small craft more likely to encounter waves large enough to capsize them.

How stability is studied

Recap:

- Centre of gravity G: the centre of mass of the entire boat.
- Centre of Buoyancy B: the centre of the *underwater* volume of the boat.
- G does not have to be below B for a boat to be stable.
- G has to be below M (the "metacentre)" for boat to be stable.
- The amount of stability is measured by the horizontal distance between G and B, "GZ".

Cabin v. flush deck

Downflooding angle

Heel angle at which water starts to enter boat:

- Open hatch
- Ventilator
- Tank breather
- Cockpit locker lid

Stability curve after downflooding angle becomes irrelevant!

Sloshing liquids – the "free surface" effect

- Occurs whenever a liquid is added to the boat:
 - Water tank
 - Fuel tank
 - Bilge water
 - Leaky buoyancy tank
- The liquid adds weight, which moves the centre of gravity "G"
- **ALSO** reduces stability by the fluid sloshing from side to side

End view of a water tank

- Amount of fluid is irrelevant
- It is the distance it moves across the boat that matters

Free surface effect – tanks, bilge water etc

view from above

side view

How to compare boats?

- Compare stability curves (rarely published) **best**
- Find EC-ISO classification (mainly for modern production boats) *industry best*
- Compare "STIX" number (mostly modern boats) accurate
- Compare "SSSN" (mostly modern boats) *approximate*
- Compare Screening Value "SV" (length and weight) very approximate
- Read my book on sailing yacht design ^(C) (just Google "Klaka yacht design")

Coverage/accuracy comparison

EC-ISO	STIX	SSSN	SV
STIX	Full hull shape	Length	Length
Buoyancy	Centre of gravity	Weight	Weight
Construction strength	Full stability curve	Beam	
	Wind heeling moment	Sail area	
	Downflooding angle	Freeboard?	

EC-ISO classification:

- Class A: Off-shore i.e. extended sailing on open sea with waves up to 10m and wind up to 55 knots
- Class B: Coastal (within 500 nm from the coast waves up to 4m and wind up to 34 knots
- Class C: Inshore (e.g. Bayraider)
- Class D: Protected waters

STIX number

EU category	Min STIX	
Α	32	
В	23	
С	14	
D	5	

The SSS Number

Screening Value SV

- SV = 2.83 x hull length (m) / weight (tonnes)
- very approximate
- Low SV is *high* stability (unlike STIX and SSSN)
- For coastal sailing SV<10
- For inshore sailing SV<14
- e.g.1: GRP BayRaider 20, no water ballast: length = 6m, weight = 0.5 tonnes, so SV = 34 With 0.3 tonnes water ballast SV = 21
- e.g. 2: Couta boat "Thistle":

length = 8.6m, weight = 5.8 tonnes, so SV = 4.2

How stability is studied

Guidelines for selecting a design

"good" features for resisting capsize:

- Long
- Heavy
- Narrow

"good" features for speed, comfort and cost:

- Short (cost)
- Light (speed)
- Wide (space)

Guidelines for selecting a design

- Decide type of sailing (inland, coastal, offshore, ocean)
- Obtain stability curve, ISO classification, STIX or similar design data
- Compare with known designs
- Decide if OK (you choose, or consult a naval architect)

Guidelines when modifying a boat

- Avoid adding weight high up (e.g. in-mast furlers, bigger gaff, thicker deck planking)
- Avoid adding weight to keel without reviewing strength
- Avoid adding weight!
- Do not add tanks without lateral baffles
- Do not add off-centre openings (hatches, breathers, ventilators)

Summary: do not change designer's specs

End